水利水电工程施工中边坡开挖支护技术的应用

罗杰龙

DOI:10.32629/btr.v3i8.3319

[摘 要] 在水利水电工程施工中,边坡开发支护技术的应用,有助于提升边坡工程施工水平,保障整体工程综合效益。为此,客观认知边坡开挖支护技术应用的重要性,全面掌控边坡开挖支护技术的应用形式与应用要点显得尤为重要。针对此,本文围绕水利水电施工中边坡开挖支护技术的实践应用展开探究。

[关键词] 水利水电工程; 边坡开挖支护技术; 应用

中图分类号: TV5; U213.1+3 文献标识码: A

在水利水电工程施工中,将边坡开挖与边坡支护结合起来,不仅可以改善施工质量,降低发生施工事故的概率,还能使整体水利水电工程在规定期限内交付竣工。本文将介绍边坡开挖支护技术在水利水电工程施工中的应用价值、应用形式与应用要点,并围绕边坡开挖安全监测工作开展详细论述。

1 水利水电工程施工中边坡开 挖支护技术的应用价值

通常来说,水利水电工程与自然施工环境存在紧密联系。这也意味着在水利水电工程施工中,需要对自然环境进行适当的改造。其中,边坡改造占据着关键地位。由于边坡环境复杂,会拖慢施工进度。一旦边坡改造不合理,就会阻碍施工进度,延误施工周期。

由此可知,在水利水电工程施工过程中合理应用边坡开挖支护技术至关重要。高效应用边坡开挖支护技术,可以有效解决边坡工程施工环境复杂问题,提升工程质量。如今,边坡开挖支护技术形式越来越多样化,能够充分满足各类边坡工程的施工需求。总之,在水利水电工程施工过程中,合理应用边坡开挖支护技术,可以增强岩体结构和边坡工程安全稳固性,加快施工进度,具有实际应用价值。

2 水利水电工程施工中边坡开 挖支护技术形式

- 2.1边坡开挖技术类型
- 2.1.1土质边坡的开挖技术

在水利水电工程施工中,土质边坡的开挖作业往往是不可避免的。开挖土质边坡需结合施工场地的地质结构条件,选择适宜的施工地点,确保边坡工程的安全稳固性。当前,大多数水利水电工程的土质边坡都是按照自上而下的次序修建的。在修建土质边坡时,要优先选择专业技能水平高、实践经验丰富的施工人员,使其在面对突发状况时,及时且正确的处理。由于土质边坡的土质较为松软,所以施工人员应严格控制削层厚度,在正式施工前,对施工设备展开全面检查,维护施工安全性。

2.1.2岩质边坡的开挖技术

岩质边坡最常用的开挖方式是钻爆 法。与土质边坡相同的是, 岩质边坡也是 按照自上而下的次序进行修建的。需结 合实际施工条件,选择对应的爆破方式。 针对分层爆破和逐层爆破这两种爆破方 式的概述如下: 首先, 逐层爆破。在水利 水电工程施工过程中,常常会遇到岩石 结构。施工单位应根据施工现场概况选 择适宜的爆破施工方式。其中,以逐层爆 破方式为主。部分岩质边坡的开挖角度 较大,坡面厚度较薄,这不仅在很大程度 上增加了施工难度,也对施工人员的专 业水平提出了更高的要求。所以,逐层爆 破要优先选择施工技术水平高,实践经 验丰富的施工人员。其次,台阶爆破。台 阶爆破也是岩质边坡开挖常用的方法之 一。台阶爆破最显著的优点就是施工安 全系数高,这能够有效降低发生边坡滑

移事故的概率。

2.1.3槽挖

在水利水电工程施工过程中,施工 单位需根据施工现场概况编制合理的槽 挖施工方案。同时,施工人员必须严格参 照施工方案进行施工,保证施工安全和 施工质量。常用的槽挖方式包括拉槽分 层爆破和保护层开挖两种。①拉槽分层 爆破。如果槽挖岩体不会影响边坡的稳 定性,可以采用拉槽分层爆破的方式施 工。在实际施工期间,施工人员要严格控 制岩体厚度。通常,岩体厚度以6米左右 为宜。由于拉槽分层爆破施工效率较高, 受到施工单位的高度推崇。②保护层开 挖。边坡开挖常常会遇到超挖问题。在 实际施工过程中,必须高度重视超挖问 题,避免因超挖导致边坡工程出现裂缝。 在边坡开挖施工中, 遵从密集、少药量、 浅孔的钻爆原则。

2.1.4钻爆设计

在岩质边坡开挖期间,钻爆设计是最基础且重要的环节。在钻爆设计时,相关人员必须对岩石结构展开细致勘察,根据岩石结构特点,编制完整可行的设计方案。此外,采用微差起爆技术和预裂爆破一次开挖成型技术实施开挖作业,能够有效避免因爆破造成的岩体结构改变问题,维护施工安全。

- 2. 2边坡支护技术应用要点
- 2.2.1锚杆支护方式

在水利水电工程施工中, 锚杆支护 方式是最常见的边坡支护技术方式。锚

文章类型: 论文|刊号 (ISSN): 2630-4651 / (中图刊号): 860GL005

杆支护的原理是利用锚杆的支护作用, 增强边坡结构的安全稳固性。锚杆支护 方式具有操作流程简便、适用性强、投 资成本低等优势。

锚杆支护方式的应用,可以有效改善边坡结构的力学性能,加强整体安全防护效果,保障边坡结构安全性。为进一步提升锚杆支护方式的应用效果,还需选择适宜的锚杆材料。运用二级普通螺纹钢筋进行规范操作,全方位动态化监控整个锚固施工流程。在锚杆支护中,采用焊管和扣件搭建脚手架,不仅能够为后续施工作业提供便利条件,还能改进施工效率,加快施工进度,进而充分发挥脚手架的利用价值。另外,相关人员要选择恰当的岩石位置,灵活调整角度,避免操作失误,促进边坡工程施工作业的良好运转。

2.2.2喷射混凝土支护方式

在水利水电工程施工中, 浅层支护也是较为常见的边坡支护方式。其中, 喷射混凝土支护方式的应用较为普遍。合理运用喷射混凝土支护方式, 可以有效增强边坡结构安全稳固性, 避免滑坡问题。在喷射混凝土施工处理中, 首先, 选择适宜的混凝土材料, 优化混凝土材料的实用性能。其次, 加大对机械设备的控制力度, 改善混凝土材料在边坡结构的安全稳固性。由于喷射混凝土支护方式的施工处理流程较为简便, 所以只适用于一些浅层边坡结构。

2.2.3深层支护方式

对于水利水电工程项目中一些深度 较大的边坡结构来说,采用深层支护方 式加以处理至关重要。在深层支护方式 应用中,导向仪发挥着关键作用。导向仪 可以指导锚索钻孔作业,将偏差控制在合理范围内,维护钻孔处理综合效益。

2.3悬臂挡土桩支护方式

在水利水电工程施工中,对悬臂挡 土桩进行有效处理也是至关重要的。悬 臂挡土桩支护处理方式,不仅可以增强 整体边坡结构的安全稳固性,还能保护 边坡工程的综合效益。悬臂挡土桩支护 方式以木材、钢材及混凝土材料为主, 形成较为理想的护墙结构。

悬臂挡土桩支护方式具有支护结构 简单,操作流程渐变,安全系数高等优势 特征。该种方式能够加强对松散地基的 防护,防止出现地基土体滑落问题。在悬 臂挡土桩支护处理方式的应用中,要注 重处理工序的标准规范性,将失误偏差 控制在合理范围内,以增强整体结构的 安全稳固性。

3 水利水电工程施工中边坡开 挖的安全监测目的与设备

加强对水利水电工程施工中边坡 开挖的安全监测,是促进整体施工作业 有序运转的必要前提。对此,下文围绕 边坡开挖安全检测的目的与应用设备 展开探究。

3.1安全监测目的

对水利水电工程施工中边坡开挖实行安全监测的主要目的是,全方位、动态化、精密化监测工程进度、工程安全与工程质量。在施工过程中,若实际情况与预期设计方案有所偏差,必定会降低整体工程施工质量。此时,加强安全监测,可以及时且有效的纠正偏差,完善设计方案,协调施工作业。总之,依靠技术人员和施工人员的共同调整,能够最大限度地降低灾害损失,确保工程在规定期限内交付竣工。

3.2安全监测设备

在水利水电工程施工过程中,要及时投放施工监测装备。尤其是地质结构条件差、岩层结构不稳定、断层数量较多的区域,密切监测施工流程,精确测量施工数据,以期为技术人员提供可靠的数据,保障施工安全。尽管所设置的监测仪器设备能够提供精确无误的数据,但人工巡查也是必不可少的。

4 结束语

综上所述,一直以来,我国始终致力于基础设施的建设和完善。而水利水电工程作为不可或缺的基础设施,与国民经济的可持续发展息息相关。在水利水电工程施工中,合理应用边坡开挖支护技术,做好安全管理,能够有效增强边坡结构的安全稳固性,减少不必要资源的损耗,进而保证整体工程质量,增大工程综合效益。

[参考文献]

[1]杜玮.探讨水利工程施工中高边坡支护与开挖技术的应用[J].建材与装饰,2019,(29);287-288.

[2]田邦成.浅析在水利水电工程施工中边坡开挖支护技术及其有效的应用[J].建材与装饰,2019,(27):293-294.

[3]区铭莲.水利水电工程施工中边坡开挖支护技术的应用[J].建材与装饰,2020,(14):18+20.

[4]李永刚.水利工程施工中边坡开挖支护技术的应用[J].现代物业(中旬刊),2018,(10);221.

作者简介:

罗杰龙(1983--),男,汉族,四川西充 人,本科,工程师,研究方向:水利水电工 程施工技术。